MIXED BOUNDARY-VALUE PROBLEM FOR THE LAPLACE
EQUATION IN THIN REGIONS OF SPECIAL SHAPE

I. E. Zuno and E. A. Tropp UDC 536.24.02

The method of asymptotic integration for elliptic equations in thin regions is extended to the
case of boundary conditions of the third kind. Two steady-state heat-conduction problems in
cylindrical objects are treated as examples.

So-called one-dimensional theories are frequently used in engineering calculations for complicated
thermal, hydraulic, or magnetic circuits; for the stress states of structures, etc. For example, there
is a one-dimensional equation for thin rods of high thermal conductivity; one-dimensional equations for the
bending of thin rods, which are the limiting cases of the equations of the theory of elasticity; equations for
long lines; ete. If the one-dimensional approximation turns out to be insufficiently accurate, a multidimen-
problem is formulated, which usually does not make use of the information obtained inthe one~-dimensional ap~
proximation. Thereare many cases of practical importance in which small corrections of the one-dimensional
theory are adeguate, and it is not necessary to resort toa solution of the complete problem, which, generally
speaking, canbe found only for objects of extremely simple geometry withboundary conditions, The existing |,
versions of the one-dimensional theories are usually not adequate for finding these corrections, whichare
"irrational" approximations, in the terminology of [1]. Recent decades have seen the development of
so-called special-perturbation methods, which permit the irrational approximations to be converted into
rational approximations; i.e.. they permit a systematic determination of the corrections of all higher or-
ders to the simple limiting solution. Many examples of one of these methods — the method of composite
asymptotic expansions — are given in {1, 12]. A rigorous derivation for a similar method, called the
"method of boundary-layer corrections® in [8], is given in [2-4]. An asymptotic integration of the Laplace
equation was used in [12] to derive a one-dimensional heat-conduction equation for a thin rod with a ther-
mally insulated lateral surface. It has been shown [5] that the method of asymptotic integration can also
be applied to problems with boundary conditions of the third kind, if the coefficient of the unknown function
is sufficiently small. Among such problems are those of the theory of heat conduction with a slight convec-
tive heat transfer at the boundary, the problem of calculating a magnetic circuit in the case in which there
are narrow air-filled gaps [13], and several others.

§1. As an example we consider the steady-state temperature distribution in a thin cylinder at whose
lateral surface there is a slight convective heat transfer with piecewise-constant heat-transfer coefficient.
We choose the boundary conditions at the ends in the simplest form in order to concentrate on those fea-
tures of the problem which are associated with the boundary condition of the third kind at the lateral surface.
The problem reduces to seeking a function which satisfies the Laplace equation

Mulr,)=0 0<r<a 0<z<l) -
and the boundary conditions
ulr, 0V="Tg, uz r, H =0, u-(a, =—h@ufla 2), 1.2)
(0, 2) < o0,

where
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5 p@=" 0<2<h_in , T,=const.
hy, I, <z<<l

= We seek an asymptotic expansion of the solution of problem
) i (1.1), (1.2) for the case of a thin cylinder, i.e., for small ¢ =
g E a/l. We also assume that the heat~transfer coefficient is small;

more precisely, we assume
= a .
hy =% H,H=0(Q1) -0, i=12 (1.3)

If the heat transfer is more pronounced, it is not possible fo
obtain a one-dimensional theory as a zeroth approximation, and
the asymptotic behavior of the solution of mixed problem (1.1),
7 (1.2) is constructed by analogy with the asymptotic behavior of
the first boundary-value problem [7].

~al

Fig. 1. Thin rod with a disk—shaped We introduce dimensionless variables, setting
fin. u=Tu, r=ar, z=1z, I, =1L, (1.4)

The dimensionless heat-transfer coefficient is introduced by Eq. (1.3). Near the discontinuity of the func-
tion H(z) we also introduce the small-scale coordinates £y =(@ — Ly)/e; #y=r; and near the lower end of the
cylinder we introduce &, =z/¢, py=r. Following the method of boundary-layer corrections we seek a solu-
tion in the form

u(r, d=wlr, 2+ (py, &) + v (p,, Lk
a separate iterative process is worked out for each of the functions w and v()'@ =1, 2).

In terms of the variables in (1.4) the problem of finding the function w, which depends on the large-
scale coordinates, becomes

Ly e, =0 0<r<l, 0<z < 1) (L1a)
r

wir, 0)=1, wy(r, ) =0, w, (1, = —eH @ w(l, 2), (0, 2) < oo. (1.22)
We seek a solution of (1.1a), (1.2a) in the form

w= X e#w,. (1.5)
k=0

Substituting (1.5) into (1.1a) and conditions (1.2a), and equating the coefficients of identical powers of ¢,
we find the following chain of problems for seeking the functions:

1 0 R J
- (r - wh)r+ — 0 =0, —w(, )+ HYw,a (L, 9 =0, 5,0, 9 <oo. (1.6)

For brevity we stipulate that in Eqgs. (1.6) and everywhere below quantities with negative indices are as-
sumed equal to zero. Setting k=0 in (1.6) we find wo=v'v-0(z), where v;(,(z) is an arbitrary function, to be
determined. The problem for w, which is found from (1.8) with k=1 is a one-dimensional second boundary-
value problem, and the condition for the solvability of this problem is an equation for the function wy:

2 [w,] == Wy — 2H(@w, = 0. . (1.m
If (1.7) holds we can find a function wy in the form
1 - -
Wy == — 5 *H (2w, + wy(2), (1.8)
where wy(z) Is an arbitrary function, determined from the condition for the solvability of the problem for
Wo .

We note that Eq. (1.7) is a particular case of the familiar equation of one-dimensional theory for a
thin rod [6]; in terms of dimensional varft_ables this equation is

wo — (APIS) @, = 0, (1.9)

where P is the perimeter and 8 is the cross-sectional area of the rod.
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- It is natural to impose the first two of the boundary conditions in (1.2a) on
4// the function wy. The discrepancy in the boundary condition at z =0 for the func-
//é tion wy; given by Eq. (1.8) is balanced by the function v(z), whose local nature
%/; i, imposes the condition v(® —0 in the limit g, —». If we seek the function v®) in
o ,;///;/_{//;'}/ 7~ | the form () =¢2v,®) 4¢3y, @)+, ., the zeroth approximation v,® turns out to be
///// 7 ,,{/ / //:,_,///'1 the solution of the boundary-value problem

T 8o (0 L) =0 0<p, <1, 0< G < ), (1.10)
77 //7/

,/%4’/ / '82- vp” (1, &) =0, ]Uéz)(ov L)l <C oo,

7Y P2

7

I .

/ o (0r, 0) =@ () = —Ap3 — ¢y, (L11)

/ 2
///% where q; determines the condition at z =0 for the function w;. In this case the

solution for v,® is

Fig. 2 < '
& ?(()2) = 2 B, J, (0,0) €xp (— . Lo), (1.12)
Rl

where aj are the positive roots of the equation J; @) =0. Since this expansion does not contain a term cor-
responding to an eigenvalue of zero, it is clear that the function ¢(p) must be orthogonal to unity; we thus
have the explicit form of the condition on w; at £,=0. By expanding ¢(p,) in terms of the orthogonal sys-
tem of eigenfunctions we can find the expansion coefficients in (1.12) in the form Bk=2A/a%(Jobzk). If r-
dependent functions appeared in the conditions at the ends, the boundary layers near the points z=0, 1
would have appeared in lower-order approximations.

Pursuing the first iterative process, we find, in each step, a function wy with an accuracy to within
some unknown term wy(z), determined from the condition for the solvability of the problem for wy +4. This
condition takes the form of the homogeneous equation z[x;rk]=fk(z), where f; is governed by the preceding
approximations. Here the conditions for wy (0) k=1, 2, ...} are determined from the corresponding prob-
lems for the functions Vk_(_zl). Furthermore, the functions w), must satisfy some special conditions at z =L.
As we see from (1.8), the discontinuity of the heat-transfer coefficient H(z) leads to the appearance of dis~
continuities in the function wy and in its derivatives. For the same reason, discontinuities appear in all
subsequent w.. In a certain average sense we can compensate for these discontinuities by specifying the
conditions

[‘z’k (Ll)] = Mh: [E’;z (Ll)] = Kh,

where P (z)]1=y(z+0) — ¢z — 0). Complete compensation of the discontinuities can be achieved only by
means of the function v(i); the values of the constants M and K are determined in the course of the third
iterative procedure.

We turn now to the determination of the function V(l)(pi, ¢1). In terms of the variables (o, Zy), the
coordinates of the ends are (1 — Ly)/e-and —Ly/¢, respectively. Seeking the asymptotic behavior of the
solution for small ¢, we should assume these coordinates to be +«, neglecting the error, which is of the
order of exp(—1/¢). The local nature of the function v() dictates the conditions v®) —0 at £y —=+w for it.
With p; =0 or py =1, the function v{) satisfies the same conditions as the function w, i.e., conditions (1.23a).
In the case £; =0 we must specify the discontinuities in v{) and vg(li)' such that the sum w+v{) is continuous
along with its first derivative with respect to z:

[o® (0)] = [w (L)] = % &% [w, (L],
k=0

’ ’ w1 a
ot (O] = & @2 (L] = X et [—a; w, (Ln].

Using these latter equations. we seek the function v{!), which is sinusoidal forg= 0, in the form v() =
g?vi? +e3vf) +... . Equating the coefficients of identical powers of ¢ in the Laplace equation and the boun-
dary conditions of the type in (1.20), we find a chain of problems for finding the function:

A (py, &) = 0; 080, 5~ = 00; [v5 (0, &) << oo



9

01

(0% (O)] = (w1 (L], [C—U(z}a) (0)] — O] =0,
1

] a
[aCl l'ok—rl (0)] [_6; Wap 41 (Lx)]-

To now determine the functions vo(i) and vy (1), we note that, according to (1.13), we have

B, D =—HE) ok n=0,1,2,..) (1.13)

1 — — . o
[ (0)] = 59? [H; wg (L — 0) — Hywy (Ly + O)'— My = o1 —N,,

i B (1.14)
|57 O | = 5 18— 0) — i L, 4 01— Ky = gl — N
1
The functions v,!) and v; @ are found by the method of separation of variables:
o = Co, i+ 2 Cp, oJo (Vepr) exp (— 150), &G >0,
k=1
(i=0,1), (1.15)
o =Dy, + 2Dy, oo (1iby) P (+ 1), & <O,
k=1
‘'where yy are the positive roots of the function Jfy). Writing the right sides of (1.14) in the form
1 SEAT) ;
—~N;=—p;+4 iL"L‘_Ni (=01 (1.16)
b Ny = g 2 (1)

and substituting (1.15) and (1.16) into the boundary conditions, we find the following system of equations
for the constants Cy ; and Dy ;:

1
Co,o"*Do,o“—"z“ o — M;; CO,I—D0,1=O;

Ch, 0 "Dh, 0= 4p,0/y§.l,, (va)s
1,1
Co1— Dy, 1=0; Ck,0+Dk,0=O; (.17

Ch, 1 + Dk, 1= 491/?2"0 (Vs)-

The condition v®) ~0 can be satisfied in the limits £y— = only if My =!/4t,, and the second condition in
(1.14) can be satisfied only if K; =1/2 ui. These requirements determine the remaining unknown constants,
M, and K;. The other coeflicients are found from (1.17):

Co, 0 =D0 o=Co 1=Du 1=0; Ck i =(—1)D ky L=2Pz/".’7:" (vw)-

The succeeding functions vk(l)are found analogously. The requirement that vy (!} decay at infinity and the
requirement of solvability of the equations [(9/0¢4)V 2‘1% +1(0)1=[0/92)w} +4(Ly)] lead to the condition that
the discontinuities of wy and Wk are orthogonal, with a weight r, to the identity element; hence we can
determine My and K;.. Knowing My and Kk, we can completely determine the function Wk and continue
the iterative process as far as we wish,

We now consider the case in which the heat transfer at part of the lateral surface is more intense
than was assumed above., For example, we assume that Eq. (1;3), which can be written in the form Bi=
0(e?), where we have used the dimensionless Biot number, holds only for z < L;, while for z>1L, we have
Bi=0() . Then repeating the procedure above, we can show that we have w=0 for z>L;. The function
vit) at £4< 0 is given by (1.15), while for ;>0 we must seek the function vl(g) in the form

= Cl, [viVoyl exp [— vV, 1.18)
i=1
where y{i) are the positive roots of the equation Bi Jyty) =yJ;fy). Satisfying the boundary conditions at £; =0,

we find a completely regnlar infinite system of linear algebraic equations for the expansion coefficients
vo1 for £; = 0. The solution of this system of equations can be found easily by the reduction method.
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§2. We now consider the problem for an object of a more complicated shape; specifically, we con-
sider the problem of the theory of heat conduction for a thin rod with a disk-shaped fin (Fig. 1), We assume
that the entire surface of the object except the circle z=1 is thermally insulated, and we assume that there
is convective heat transfer at the upper surface of the disk:

— iz (7, ) =aulr, ). (2.1

We assume the thickness of this disk to be a quantity of the same order of smallness as the rod radius; i.e.,
we assume a/l=¢. h/b=He, H=O1),and b/l = (1) in the limit e—~ 0. In terms of the dimensionless vari-
ables (r, z) theproblem can be stated as follows: We are to find the function u(r, z) which satisfies the equa-
tion

1 (ruy Yy + Sttzz =0
r 2.2y

in the region shown by Fig. 1 with the boundary conditions

u(r, 0)=T,, (0, 2)|<< oo, uz(r 1) = — Aeutr, 1), A= 25, @2.3)

over the rest of the surface the normal derivative of the function u vanishes,

In terms of the variables (r, z) it is convenient to seek a solution in the cylindrical part of the region,
0<r<1, 0<z<1, To construct the solution in the disk, a < r<b, I—h<z< [, itis preferable to choose
the coordinates Z =( — Z)/h, R =r/b., The boundary layers formed at the intersection of the disk and the
cylinder, as before, are constructed in terms of the small-scale variables oy =r/a. =8 — 2)/(1, while
the boundary layer at the z=0 end is constructed of the variables p,=r/a, £, =z/a. We seek an approximate
solution of the problem in the form

u=uD(r, 2) +u®(R, Z) + oD (p;, &)+ 0D (o, §) + 09 (p,, Lo)-

Here the function u!) is determined in the eylinder 0<r <1, 0<z<1;the function u® is determined
in the region e/B<R < 1 (where B=b/l), 0<Z <1; and the boundary layers v, v@), and v®) are determined
in the regions 0 <py <1, 0< g <o 1<py<», 0<fy<BH;and 0<p,<1, 0<gy<». Equations for the func-
tions u(‘)(L =1, 2) and v(k)(k 1,2, 3) and the conditions at the surface of the cylinder and the digk are found
from (2.2)-(2.3) after the appropriate change of variables. The requirements that the function and its nor-
mal derivative be continuous at the disk—cylinderinterface lead to the relations

oD (1, &) —o® (1, T —u® (—% Z) —um (1, 2), 2.4

(1) . F ol & 1y

o 1, G el 0, =gl (5 Z) a0 2.5)
0<l;<<BH, 0<<Z<1, 1 —=hll<<z<C].

The sharp break at the boundary of the object leads to the appearance of logarithmic terms in the

asymptotic expansion of the solution in ¢¥, asinthe hydrodynamic problem of flow around a rectangular
profile [1].

The functmn v(3)(p2 é:z) isconstructedina manner similar to that used above. Then, usingthe same argu~
ments, we can see that the term of the order of ¢’ in the expansion of u®) depends only on z and satisfies an
equation like (1.7) with h=0, Analogous(y we can obtain an equation for the first nonvanishing term in the
expansion of the function u(z) the term uy 2) = uoz) to that (R)., This term is given in order of magnitude by

(Ru§”'y — (AB/H) Ruf? = (2.6)

The solution of (2.6) which satisfies the boundary condition of the second kind at R=1 is

wor-cr [u(y/ By ) BB e

Knowing the behavior of the modified Bessel functions for small arguments, we can find the asymptotic
values of ul®) at the disk — cylinder interface:

Z{{*”(%) ——CP1, (I/AB)Ine-}—O(l) Py (T;) - —BCPI, (I/A1f> 1 0@lne). @.8)

651



Equations (2.8) show that if the solution is to remain bounded as ¢ —0 there must be no term of the
order of ¢ in the expansion for u®). Here the functions u®) and u® can "grow together" only if the con-
dition ﬁsl) (1)=0 holds. The function uf!) determined by this condition cannot satisfy the third of the condi-
tions in (2.3). The resulting discrepancy, of the order of £, must be balanced, according to the condition

el ol —— AR [ 4 o], § =0 =0), 0<r, py<1, (2.9)

[which follows from (2.3)], by the function v), The expansion of this function, like that for v(z), must
begin with the term ev{!). The continuity of the heat flux from the rod into the disk [Eq. (2.5)], alongwith.
the asymptotic equations in (2.8), dictates the choice of power of ¢ in the expansion of u®, i.e., u® :sﬁ§2)+

Finally, the first equation in {2.8), along with (2.4), implies the presence of logarithmic terms in
the expansion of ul), namely, a®) =ﬁ§1) +eﬁi(1)+ 81n8u1(1)1+ N

Using the terms of the expansions written out above and the conditions for the matching of the large-
scale functions u) and u® and the functions of the boundary-layer type, v®) and v®) [Eqs. 2.4), @.5),
and (2.9)], we can write the final formulation of the problem for vgl) and voz): We are to find functions which
are sinusoidal in the regions 0< p; <1, 0<f;< = and 1<py<», 0<z,<BH and which satisfy the conditions

9 9oy 0) = —To; 2ok (o, BH)=0;

0%, dpy
9 (2 3 @ (2.10)
A e 8} B = * 0 =O’ :
o w (0, BH) 3 v 0y, 0)

0 >0 (¢~ ), o> -0 (9~ c0)
and the joining conditions

a 6 2 b
21, ) =g+l (1, ),
dp 9

1 1
U(()2) L = U(()I) (1, ty— ToC1 -+ Az-

The quantity g, which is related to the one-dimensional solution in the disk, Géz), is to be determined
from the condition for solvability of the problem of v{!), since for arbitrary C{) and 4, it is not possible to
satisfy the decay conditions in the limits py —~» and £y —<«. Using the method of separation of variables,
we can write v§) and v&) as

oy = 2 D, exp (— mpLy) Jo (uipy) 0<<py<<1, BH <L, << o0);
k=1

o= o (d—21,— ) 46— N Dyexp A

"= o\ ‘T";hph'

chuly _ 25 Ry kalBE) | o BH) cos (kny/BH) (0<py<< 1, 0< L, < BH);
X g ot g " T, (en/BH) " (ks ' "

of? = 3, Ey cos (enly/ BH)K (ferpy/BH) (1<, < 0, 0< &y < BH), (219

k=1

where uj are the positive roots of the equation Jy 1) =0,

The condition for the solvability of the problem for the region (0 <z;< BH, 0<p,<1) leads to an ex-
plicit expression for the quantity q=— Ty/2BH. Since the first and third expansions in (2.11) do not con-
tain terms with eigenfunctions corresponding to the eigenvalue of zero, the orthogonality conditions

' 1

{ of" oy, BH)pydoy =0
0

and
BH

"2 =
_(0 of (1, 4,)dty =0 @.12)

must hold. From these conditions we can find explicit expressions for C; and A,:
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Co=T 4 To . 2)‘ Lot

k=]

2.13)
°oTBH | T,

— - — J(p’h o\t —1 km
A==, +SBH+BHEDeXp( s BH) 24 - K‘(BH)

Using the conjugate conditions (2.10) to determine the coefficients Dy and Ey in expansions (2.11),
we can find a set of two infinite systems of algebraic equations. Using methods analogous to those in [10],
we can show this set of two systems is completely regular; this result allows us to, in turn, find the un-
knowns Dy and Ey by the reduction method with any specified accuracy [11].

The substituting of the resulting values of these unknowns into 2.11) completely determines the first
terms of the asymptotic expansions of the corresponding functions and permits us to begin a new cycle of
iterations. The entire iterative process can be pursued as long as we wish; any term of the type epln%ug)q
generates ferms eP *!Indevgh, g and sp+21nqeué)+2 g which in turn generate terms of the type ep+2Ind+1
euS o, q+1 and €p+11nq8u8+1 qs iL.e., there is a sort of chain reaction, which doubles the number of terms
in the expansion after each cycle.

In conclusion, we wish to point out certain features of the iterative process for the case in which the
disk is "thinner" than the rod, . in the case h/b=Hie?, H; =0 (1) in the limit ¢ —~ 0. We assume that the
coordinate of the upper surface of the disk is z=1I; in | general, this surface may not coincide with the upper
end of the cylinder. Introducing the coordinates X=@ —a)/h, Y=(z — I;)/h, we find that the function vl
satisfies

9
aX

[(z ﬂX) ]+(1 eX) a;"yl’ -0 (2.14)

X |

in the region shown in Fig. 2. Accordingly, each term in the expansion of v®) satisfies a two-dimensional
Laplace equation in Cartesian coordinates, The logarithmic terms In the asymptotic expansion appear be-
cause of the logarithmic singularity of the function performing the conformal mapping of the region (Fig. 2)
into a band. The functions u® andu® nare interchanged" with the boundary conditions. The heat flux
from the rod into the disk is determined in each approximation from the condition for the solvability of the
one-dimensional problem in the disk. This heat flux determines the magnitude of the discontinuity of the
derivative u®) at the cross section of the disk for terms of higher order, and the terms in the expansion

of u{) determined in accordance with this condition give the value of the temperature in the disk,

NOTATION

u, dimensionless temperature; &, small parameter of the problem; r, z, dimensional coordinates;
r, z, R, Z, p, £, dimensionless variables; Bi =oe/x, Biot number; ¢, heat-transfer coefficient; A, ther-
mal conductivity; A, B, H, dimensionless coefficients; Jy(x), Jy(x), Bessel functions of the first kind; [;(x),
I; x). Ko(x), K;(x), modified Bessel functions.
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